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Abstract=We derive and analyze several methods for systems of hyperbolic equations with
wide ranges of signal speeds. These techniques are aiso useful for problems whose coelficients have
large mean values about which they oscillate with small amplitude. Our methods are based on
additive splittings of the operators into components that can be approximated indcpendently on the
different titne scales, some of which arc sometimes treated cxactly. The elficiency of the splitting
mcthods is seen to depend on the crror incurred in splitting the exact solution operator. This is
analyzed and a technique is discussed lor reducing this error through a simple change of variables.
A procedure for gencrating the appropriate boundary data for the intermediate solutions is also
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1. Introduction.

Splitting methods for Lime-dependent partial dilferential equations have been wost Frequently
studied in the context of spatial splitlings, as in the approximate factorizalion techniques for
clliciently implementing implicit algorithims in more than one space dimension(8], {11], [13]. Some
aitention has also been given to splilting or fractional step methods for problems where the
differential operator is splil up into picces corresponding to different physical processes which are
most naturally handled by dillerent techniques. This has becen done, for example, with convection-
diffusion and the Navier-Stokes equations(1], {4], (5]

More generally, a splitting method may be uscful any time one is faced with a problem

u, = Au | (1.1)

where A is some differential operator of the form

A=A+ A
such that the problems
u = A1u (1.2a)
and
Ug = Azu (1.2b)

are each easier to solve than the original problem. By alternating betwecen solving (1.2a) and (1.2b)
we hope to compute a salisfactory sofution to (I.1).
In this paper we consider such methods applu.d to a one-dimensional quasilincar hyperbolic

‘system

uy = A(z, ¢, uju, ' (1.3)

where A is an n X n matrix with real cigenvalues. We assume that A is of the form
A= Af'*‘A,,. (1.4)

In our notation, “f™ and “s” stand for “fast” and “slow” respectively, which reflects a common
situation in which the boluuon contains waves Lraveling at quite different wave speeds. If A is
constant then the solution operator for the problem (1.3) on a single limestep of size k is exp(kA8.),
that is to say

u(z,t + k) = exp(kAd,)u(z, (1.5)

Fer nonconstant A the solution operator is more complicated. Ou 1nalysis will be concerned
mostly with the constant coeflicient case, so we will use the notation of (1.5) throughout. The
ideas gencralize easily, but are most intuitively seen in terms of exponentials.

The additive splitting (1.4) comes into play when the solution operator exp(kAaz) is ap-
proximated by the product of the solution operators for the subproblems

U = Asus (1.6a)

and
Uy = Ay, (l.6b)

We replace (1.5) by
u(z, t + k) = exp(kA;0.) exp(kALD2)u(z, t).
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An approximalion Lo u(x, ¢ + k) is thus obtained by first solving (1.6b) with u(zx, ) as initial data,
and using the resulting solution as initial data for (1.6a). I Ay and A, commute, this splitting
is exacl. When they do not comnule, we have introduced an crror which is O(k%). As noted by
Strang{186], this error can be reduced to O(k?*) by use of the splitling

exp(k(Ag + As)d.) = exp(§kA;Dz) exp(kAsDx) exp(LkAfD;). (r.7)

Analogous results hold for the corresponding splittings with variable cocflicienis. Computations
conlirm that the global error is also improved (from O(k) to O(k?%)) by the use of this splitting.

The numerical approximations to the solution operators exp(kA,3;) and exp(kA;0;) will be
denoted by Q (k) and Qf(k/2) respectively. The numerical method based on the Strang splitting
(1.7) is then

UnH! = Qs(k/2)Q4(k)Q (k/2)UT, (1.8)

where U2, is the numerical approximation to u(mh, nk) on a grid with Az = h and At = k. When
splitting a multidimensional problem into one-dimensional subproblems, this sort of a splitting
gives rise to the so-called locally one dimensional (LOD) method, a spatially split scheme. [n the
present context we will refer to {1.8) as the time-split method.

In practice U™t! can be computed via the sequence

U = Q(k/2)UT,
U:r: = Qs(k)U,, . (1.9)
Ut = Qsk/2)U

although it should be noted that when several steps of (1.8) are applied successively the adjacent

Q(k/2) operators can be combined into Q(k), and the halif-step operators need only be applied
at the beginning and immediately before printout, i.e.

Un = Qs(k[2)Qs(k)Q (k) - Qs (K)Qu(K)Q s (k/2)UT,.

There are several siluations in which the use of the time split method may lead to a more
eflicient solution of the original problern. We will mention three such cases here. Our analysis will
be mostly concerned with the first and last of these.

Problem 1: Suppose the solution to (1.3) contains both fast waves and slow waves, i.e. the
cigenvalues u; of A satisfy .

1] < lp2] < o0 < gl Kttt <+ < tm]-

Assume also that there are relatively few elements of A which contribute to the fast waves. We can
take advantage of this structure by splitting the operator into slow and fast parts and using small
time steps only on the fast part. That is, we can choose k so that exp(kA,d;) can be adequatly
represented by a single step of some finite difference scheme and then approximate exp(}kAyd;)
by several steps of a difference scheme with a smaller timestep. Similarly, we can handle more
than two clusters of wave speeds by means of further splittings.

: Such a splitting method requires less work than using small timesteps on the full unsplit
! problem, and will thus be more efficient provided the accuracy is not too adversely affected by the
error in the splitting. We will sce that this depends very much on the problem at hand. In cases
where the splitting error is small, the time-split method actually may be more accurate, since we

o — e e ——
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will be able Lo use nearly optimal mesh ratios for cach cluster Lo minimize the truncation error
and improve other characleristics ol Lthe method, such as its dissipative behavior.,

Similar splittings have been considered by 1Sngquist, Gustalsson and Vreeeburg[4] lor this type
of problem. However, the splilling in their problem involved little interaction between the different
time scales, so that many of the problems we shall encounter were not present.,

Example [.1. Consider a block triangular system ol the form

t A
A= [e/(‘)” A;z] (1.10)

with ||Ay|| = ||A22]] = 1 and € <« 1. It is rcasonable to take

1 0 0 Ay
A,=[e’(‘)“ 0], A,=[0 A:] (1.11)

FFor this problem the elfectiveness of the split method depends greatly on the coupling Ay between
the different time scales. This is analyzed in section 2 where we also present a simple procedure
for changing variables Lo reduce the coupling,

Problem 2: Consider the same situation as in Problem 1, but where the fast waves are
known to he absent from the physical solution of intercest. Recently Kreiss[9], [10] and Browning,
Kasahara, and Kreiss[2] have considered some new approaches for this problem which rely upon
properly preparing the data so that the fast wave components are eliminated. These can be
considered as projection techniques. Majda[12] has considered using filters to suppress the fast
waves in the same context.

In this case the true solution should satisfy

exp(kAd)u(z, t) = exp(kA0;)u(z, t)

providing the splitting between fast and slow seales is done correctly. TFor variable coeflicient
problems it will not be possible to have the correct splitting at all times and .he operalor Ay
cannot be dropped cntirely. However, we can counsider using the time-split method (1.8) with a less
accurate scheme for Q(k/2) than is used for Q4(k) , perhaps by using the same timestep for both
with a larger spatial step for Qf(k/2) . In such a manner it may again be possible Lo obtain the
same accuracy more efficiently. Turkel and Zwas[18] have considered a method for this problem
which is similar in spirit.

Problem 3: Suppose that the coelficients in the problem (1.3) have large mean valucs
about which they oscillate with small amplitude. In this case it may be possible to split out a
constant coefficient problem which can be solved exactly, leaving bchind the small perturbations
for A,. Then (1.8) can be used with some large timestep approximation for Q,(k) while Q;(k/2) =
cxp(3kAs8;) exactly. This is clearly more efficient than using small timesteps on the unsplit
problem. Morcover, since the dominant part of the operator is being handled exactly, great
increases in accuracy are also possible.

Example 1.2. The simplest example is the scalar problem
ue = (1 + afz))u, (1.12)
where |a(z)| < 1 and we use the splitting
Ap =1, A, = afz).
3
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Take k == ph for some integer p. The operator exp(LkA;d,) in known exactly: exp(f k450, )u(z, t) =
w(e + Lph, 8). 11 Lax-Wendrolf is used for the reuaining subproblem u, = «r)u then the method
(£.8) ean be written as a single step method

Uptt = Un o+ 30(Unipit — Unip—t) + 102 a(Zn)(((Em + h) + a(Zn)(Unipit = Unip)
—(&Zm) + &(Em = AU Tt p = Unipoy))

where £, = Zm + 3ph. Notice that even though this is a scalar problem, the operators 9, and
a{z)3; do nol commute and so the Strang spliting must be used.

The shallow -vater equations provide a more interesting example of Problem 3. These are
discussed in scction 8.

General considerations. The cffectiveness of the time-split method depends on the error
in the splitting (L.7). If this is exact then the splitting method is clearly more eflicient for the
types of problems we are considering. On the other hand, if the splitting error dominates, it
may be necessary to reduce the timestep considerably, climinating Lhe possible benefils of the
splitting. In the next section we derive an cxplicit expression for the splitting error and indicate
how to determine whether a splitting method is useful on a given problem. We will show that the
cqualions sometimes need to be transformed to reduce the linkage between fast and slow modes in
order to achieve the desired accuracy.

The @ operators in the time-split method can consist of one or more steps of any explicit or
implicit scheme using two time levels. It is not immediately clear how a scheme using more than
two time levels (such as leapfrog) could be used. For supposc we want to use leapfrog as Q,(k) to go
from U” to U"" in (1.9). Then we would need some approximation to exp(—kA,d;)U" (which is not
U™) to play the role of U™ at the previous lime level. As a first step towards incorporating multi-
level schemes into the splitting framework, section 4 introduces a different type of split scheme
which does use leapfrog for Q4(k). This method is based upon approximations to the variation
of paramecters formula, or Duhamel’s principal, and will be called the Leapfrog Duhamel method.
Similar ideas have been used for ordinary dilferential equalions by Certaine[3|. The accuracy and
stability of the Leapfrog Duhamel method is considered in scctions 5 and 8.

The initial boundary value problem is considered in scetion 7. In most cases boundary data
will have to be supplied for the intermediale solutions U and U™ in (1.9). We consider the
problem of approximating the correct boundary data in terms of the given boundary conditions.

Some further examples of splittings and computational results arc presented in section 8.

2. Accuracy of the time-split method.

In this section we consider discretizations of the approximate splitting
u(z,t + k) = exp(3kA;0:) exp(kA,0,) exp(LkA;9;) u(z, t) (2.1)

for the solution of u, = Au; = (Ay + A,)u. with ||A,]| € ||Af]l. Up until section 7 we will Jdeal
only with the Cauchy problem, where —oo < z < 00. Of coursc these results also hold for a strip
problem with periodic boundary conditions, e.g., 0 < z < 1 and u(0,t) = u(1,t). We will assume
that Ay and A, are constant matrices but our approach carries over for more gencral problems
il the exponentials in (2.1) are replaced by the appropriale solution operators. For example, the
splitting error for the problem (1.12) is given in example 8.2 of section 8.

Il Ay and A, commute then the splitting (2.1) is exact. Otherwise we define the splitting error

1
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operator Iip1i (k) by . .

Epin(k) = exp($£A50,) explbA,d,) exp( LA ;D) — exp(k(Af + A,)0z)
= - W31 A%A, = fAp A A + LA,AS - (2.2)
— FA%A; + AAp A, = LA, AR)02 + O(KY).

The local truncation error operators for the approximate solution operators Qg(k/2) and
Q.(k) are delined by
Ep(k/2) = Qf(k/2) — exp(3kA;3;)
I(k) = Q4(k) — exp(kA8z).
Note that for a sccond order scheme such as Lax-Wendroff these are O(k3). We can now compute
the truncalion error operator for the split scheme. The numerical solution operator is

Q1 (k/2)Qu(K)Q(k/2) = (exp(1A;0,) + By{k/2))(explkAsds) + Eolk))
X (exp(LkAfdz) + Es(k/2))
= oxp($kA;0;) exp(kAs0;) exp(§kA ;D)
+ Es(k) + 2E4(k/2) + O(k*)

= cxp({k(Af + A,)0;) + Espiie(k)
+ E,(k) + 2E(k/2) + O(k%).

The truncation error operator for the time-split method (TSM) is thus

E7°%(k) = Qs (k/2)Q4(k)Qs(k/2) — exp(k(As + A,)3:) (2.3)
= (k) + Eo(k) + 2E4(k/2) + O(k*). ”
For a given problem this error can be computed dircctly and used to assess the efliciency of the
time-split method relative to an unsplit method.
In order Lo illustrate some of the propertics of this method and the effect the splitting error
Egpii(k) has on its utility, we restrict our altention to the case where @Q,(k) consists of a single
step of Lax-Wendroff. For convenience we use LW(A, k) to denote the Lax-Wendroff operator,

LW(A, k) = I + kADy + $k*A*D, . D_

where Do, D, and D_ are the standard centered, forward, and backward differcnce operators,
respectively. We thus have

Q.(k) = LW(A,, k). (2.4a)
For Q(k/2) we consider both
Q(k/2) = exp(3kA;9,) (2.40)
and
Q(k[2) = (LW(A;, k[m))™/? (2.4¢)

for some even integer m. The situation (2.4b) occurs when the solution operator exp(3kA;9d,) is
known cxactly, as in Problem 3. In (2.4c) Q;(k/2) consists of m/2 steps of Lax-Wendroll with
timestep k/m. This might be appropriate when solving Problem 1, for example.

5
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The standard ervor analysis for Lax- Wendroll shows that for (2.4a) we have

Ey(k) = LW (k) = — Jk3A3 = kh*A,)0% + O(KY). (2.5a)
When (2.4b) is used there is no error on the fast scale and
Eg(k/2) = E7P(k/2) = 0. (2.5b)
Otherwise, when (2.4¢) is used,

Qs(k/2) = (LW(A;, k/m))™?

m/2
= (cxp(ﬁ/\,& - (—'s( -~ ﬁthf)Bi) !

= exp(LkA;d,) — ( AT — £44,)03 + O(k*)

and so
Ef(k/2) = E¥W(k[2) = — H(E5 43 — kh%A5)02 + O(kY). (2.5¢)

In this case we must choose an appropriate value of m, the number of small timesteps used within
cach large timesiep. For fixed A, the error ELW(Ic/Z) does not approach zero aa m — oo. From
(2.5¢) it seems unreasonable to take m any larger than a value for which || 23 A3|| = ||kh% A4l
This suggests taking

k
m = il (26)

The proper choice of m may also be influenced by stability requirements. Determining the stability
of the operator Q(k/2)Q,(k)Q(k/2) is in gencral a diflicult problem, which will be considered
in some detail in section 5. It will be shown there that for some problems the product operator
is stable provided @g(k/2) and Q4(k) are cach stable indcpendently. It is well known that for
Lax-Wendroll the stability condition on Qf(k/2) is p(Af)k/mh < 1, ic,, m > p(Af)k/h. The m
given in (2.6) is consistent with this requirement. Also note that for k/h == 1/||A,l}, (2.6) becomes
m =~ A/l Al

When the splitting error E,pi;.(k) is negligible compared to the other terms in (2.3), the
truncation error for the split scheme becomes

ETM(k) = E,(k) + 2E4(k(2) + O(k*)
= — {3 (AD + 2:43) — kR%(A, + Af))03 + O(K*).
This error is roughly the same as we would obtain using (LW(A, k/m))™, i.e., Lax-Wendrolf with

# gmall steps on the unsplit problem. The truncation error lor vhe unspht mcthod can be derived in
the same manner as (2.5¢) to obtain

E"w(k =- L(;-i,(A, + A,)% — kh*(A; + A,))32 + O(k*)

— L5543 — kh*(Af + A,))32. ®7)

Thus we do almost as well by taking large steps with A, and small steps with Af as we would by
taking small steps on the unsplit problem. This can lead to considerable savings. If Q(k/2) =

6




exp(§£:470;) the results are even more striking. Now the-error (2.3) is simply .

ETVM(k) = Ey(k) + O(k") = - Yk* A} = kh®A,)0% + O(k").

Comparing this to (2.7) shows that the split scheme is considerably more accurate. It also requires
less work. since now nothing is computed using small steps.

The results of the last paragraph are all based on the assumption that /5,5, (k) is negligible.
In practice Fypi; (k) may casily dominate the discretization crror I5,(k) + 2/7¢(k/2). in this casc the
split scheme is less accurate than Lax-Wendroff with timestep &/m. Nonetheless the split scheme
may be preferable. It may be possible to use the split scheme with smaller & and k to obtain
better accuracy while still requiring less work than the unsplit scheme. The proper quantity for
comparison is the work required to obtain a given accuracy. This can he estimated and compared

] for various methods as we now do. Under some mild assumptions, we will see that the methods
3 (2.4a,b) and (2.4a,c) arc always more cfficient than the unsplit scheme (providing we choose k/h
properly).

Work comparisons. We will compute expressions for the work required o obtain a solution
at time ¢ = | with error at most 7. All of the bounds below are rough order of magnitude bounds
which are sufficient for our present purpose. Suppose that

Il =l Afl =a,  [lA,]| =0

where b/a = ¢ € 1. Also suppose that [|uz,.|| = 1. This is for convenience only, since it removes
one common factor from all of the bounds below.

We will first analyze the unsplit Lax-Wendrolf method LW(A, k). Suppose that W is the
“work required to compute LW(A, k)UT, at a single point Z.,,. Then the work required to advance
the solution on a unit z-interval by one unit of time is W/kh = AW/k? if k = \h. The error
committed in one time unit using the unsplit method is bounded by '

N((LW(A, k))/* — exp(A8,))ul|
< ECRIAIR + kA2 Al + O(kY)
< Lk?(a® + a/2?) + O(K®).
Since we require an error == 7, we set
L2 (a3 +a/NY) =17
giving

2 _ 61
T afa? + 1/22)

Thus w(7;)\), the work required to achicve a given accuracy 7 using Lax-Wendroll with stepsize

ratio ), is given by

AW
w(r;\) = =3

2
=(ha+ 1/xa)“—6—rvz.

7
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We have not yel specilied X. Choosing X to minimize w(r; X) gives X = 1 /a and the minimum work
w(r) is

for unsplit Lax-Wendroff, (2.8)

Now consider the split method (2.4a,b). Let W, be the work required to apply Lax-Wendroff on
the slow scale and W™ the work required to computed exp(kA;dz)UT,. Set WTM = W, + WP,
Typically W™ == W. The error over onc unii of time for the split scheme is bounded by

|((@stk/21@u00@5k/2)) ¥ = exp(402)) o
< %HE,pm(k)u + By(k)u + 2025 (k/2)u + O(kY)|

For (2.4b), E¢(k/2) = 0. Irom (2.5a),

1B (k)ul] < §(k*6% + h%)
= Fk3(6% + b/2?).

The splitting error is bounded using (2.2),

| Espiic(k)ull < $&%(a®b + ab?)
~ -};Icsazb,

although it may be much smaller for some problems. Since our results depend very much on the
size of this crror, we will suppose for now that

| Espiic(k)ull < ko
for some o, so that .
1
g1 Esprin(k)u + Eq(k)ul| < LE%(a + b + b/)\%).
In order to obtain accuracy T we must take

2 60
T o+ b3+ b2

SO
w(T; \) = A\WTSM /2
WTsM
= )\(0 + b + b/)\z)—s_’_—. (2.10)

The optimal stepsize ratio X now depends on the size of the splitting error and is given by

(2.11)

so that
TSM

w(r) = Vb(o + b3)w

for the time split method (2.43,5).

8




if o < 6 (e when Ap and Ay commute), then (2.01) gives X &= 1/b and . .

l) vVTbM
w(r) = — P

(2.12)

When WTM 2= W Lhis is better than (2.8) by a factor of €2, mecaning greatly improved clficieney.
: Nole that when ¢ = 0 the only crror incurred is the error in using Lax-Wendroll on the slow scale.
I'rom our previous discussion of Lax-Wendroff it is clear why X = 1/b is optimal in this case.
On the other hand, if the splitting error is as bad as (2.9) indicates, then 6 = a®band A = 1/a
n (2.11) giving
abWTsM
w(T) —
) i This is still an improvement over (2.8), although now only by a factor of e. Note that now X is o
' chosen appropriate to the fast scale, even though the fast part of the problem is solved exactly, '
{ in order to reduce the error duc to splitting. Indeed, il we try to use A = 1/b when ¢ = a?b, we
obtain no improvement over (2.8). For this reason it is advisable to always use small time steps
] ' with the time-split method (2.4a,b) unless Fy,(k) is known to be very sinall, in which case even
! grealer cfficiency is achieved by using larger timesteps.
Now consider the method (2.4a,¢) where Lax-Wendroff is used for both operators. In this case
1 WTs™ = W, + mWy where Wy is the work requried to apply Lax-Wendroff on the fast scale. We
- are assuming that Wy « W, = W. We will take m =~ \a as suggested in (2.6). Using (2.5¢) we
find that .

%HES,,“._(k)u + By(kyu + 2B, (k/2)u|| < k%= + b3 + b/2% +a®/m? + a/)\?%)..

We then obtain ‘ _ i
W, + AaWy
67 1

for (2.4a,c). (2.13)

w(7;\) = Mo + b3 + b/AE + 2a/2?)

~ No +b% + 2a/x2)—w’—%%“—%

The optimal X now depends on the relation between Wy and W, and is more difficult to solve for.
We will discuss three possible choices of A\: X = 1/a, A = 1/b, and A = 1/Vab.

When X\ = 1/a, m = 1 and we are simply allernating between LW(Ay, k) and LW(A,, k). In
gencral we would not expect this to be any more efficient than using the unsplit method LW(A4, k).
Indeed, we find that

w(r;1/a) =~ (o + bs)/a + 2a2)—v£,’—(;'-—1_—M
2 W, + Wf :
a e ——
3r

regardless of the size of o. This is better than (2.8) only if W, + Wy < W, which is generally not
the case for the problems we arc considering. (Note that this is the case, however, in the LOD
method, where we alternate belween solving one-dimensional implicit problems in different space
dimensions.)

1 For A = 1/b increased efficiency is possible if the splitting error is small. From (2.13),

+ %Wf

W,
w(r; 1/b) = (/b + 2b° + 2ab)

! ’+ W
~ (0/b+2a b)—~—‘——’




Suppose thal Wy + W, == 3 for some v < 1720 Then W, + ¢ Wp = W and so

y 14
w(r; 1/b) = (aa/b* +2u“)A:;—‘. (2.11)
T
This is better than (2.8) whenever o < ab?/+. In this case the time-split method is more efficient.
For example, if 0 = 0, (2.11) is better than (2.8) by a factor of 4.
Unlortunately, il 0 = a*b as in (2.9), then
(12(W, + ';"V/)
37
which is no belter than (2.8) and may be worse if Wy > W,
Now consider an intermediate stepsize ratio, X = 1/Vab. Irom (2.13),

W, + Va/b Wy
%

w{T;1/b) =

w(7; | Vab :::l— o+ 2a°b
(75 t/Vab) \/E( )

< (;3/2[)”2 W, + \/(l/b l’Vf
- 27

2 Ws \/‘:/_b Wy
= V! ————

2T
regardless of the size of o. ‘This is better than (2.8) if Wy + /(W, < 2W, which will generally be
true.

We conclude that the method (2.4a,¢) is more cfficient when X is chosen correctly. If the
splitting crror is known to be small then X = 1/b can be used. QOtherwise smaller timesteps should
be used, c.g. X = 1/Vub. Very small timesteps, A = 1/a, should never be used.

Here we have not dealt, with the advantages of the split scheme resulting from the possibility of
choosing the stepsize ratio on cach scale so that the k3 and kh? terms in cach of the Lax-Wendroff
errors nearly cancel oul. When this can be done, the splitting may be even more advantageous
than indicated here.

Block triangular systems. Since the efliciency of the split scheme is limited primarily by
the splitting error, it is interesting to investigale how this error depends on the coupling between
fast and slow scales in a simple model system. Suppose that the matrix A is of the form (1.10)
with ||A 2]l &= a < 1 and that the splitting (1.11) is used. Here Ay, is the coupling between fast
and slow scales. If A3 = 0, the problem is uncoupled and Eqpii (k) = 0. In genceral, from (2.2),

3 1 1
Eppilk) = =0 FeAn(2AnAL = 24izda) g1 4 o4,

Thus || Espiie(k)ul] &~ ak®/24¢®. The efficiency of the splilting depends on the size of a. In the
notation used above, we have

a=1/e b
For unsplit Lax-Wendrolf, (2.8) gives

i
Q
I
-
R
Q
N
o

w(r) = (2.15)

z5
The time-split method (2.4a,b) is always more efficient if we choose
A== (1 + Laa?b)"1/2,

For example, il a = | we should use A =~ 2/a = 2¢ in order to reduce (2.15) by a factor of ¢. The
maximum cfficiency indicated in (2.12) is achicvable only if & < ¢2, in which case taking A = 1

reduces (2.15) by a factor or €2.

10
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Reducing the splitting error. Por block triangular systems in which Ao is not sulliciently
small, il is possible Lo reduce Lhe coupling throngn a change of variables so that the optimal
clliciency can be achieved. A change ol variables amounts o replacing « by @ = Du for some
nonsingular matrix 3. The system u, = Aug Lhen becomes w, = BAB Vi, Clearly, if B is
chosen to be the eigenvector matrix of A then the problem completely decouples into independent
sealar equations. We are seeking something less expensive which only decouples the last and slow
seales. Thus we want a matrix /3 such that

1 0 ’
BAR~' = |<Cut 2.16
[ 0 022] : (2.16)

with [|Cy(]] = ||C22|| = 1. Tn the block triangular case, it suflices to consider I3 of the form

I B -1 I —-Big
D = B = .
[0 I ]’ [0 I

Then

BAB™ ' = [%All —1AuBi+ Az + 312/122]
0 Agg

and so Bz should be chosen to solve
1 .
cAubiz — BizAsz = Ay : (2.17)
in order to complelely decouple the fast and slow scales. :
In the present context solving for Byz from (2.17) is not worthwhile. [n order Lo achicve

optimal eflicicncy we nced only reduce the coupling by one or two factors of ¢. Further reductions
do not gain anything once the Lax-Wendrolf errors dominate. This suggests taking

Bia = A7} A2 (2.18)
so that \
BAB™!' = [%Au A(nz)]
0 Aga
where

A(IEZ) = GA-‘_II A12A22.

We now have ”A(l?” ~ ea provided ||AT}'|l ~ 1. The coupling is thus reduced by a factor of
€ through the use of a very simple change of variables. The above process can be repeated to

obtain additional factors of €. This change of variables has been suggested by Kreiss[9] in a similar
context.

For full systems of the form

14 A
A=t 11 12]
[ Ay Aaz

we can obtain a similar reduction in the size of both off-diagonal blocks and again reduce the
splitting error by severa! orders of magnitude. In this case we consider B of the form

p|r K[l o] _[r+KL K
o IlL 1 L If

11
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It is easy Lo verily that the lower corner of A is annihilated by taking L to salisly
|
—LAH - /122[4 bl [u\lgll + /\21 = 0.
€

The matrix K can then be chosen as before to remove Lthe remaining upper corner. This results
in a system of the form (2.16). This particular transformation is discussed more completely by
O'Malley and Anderson[14]. Again, however, we are not interested here in completely annihilating
the corners, but rather in reducing them by a factor of €. This is easily accomplished by Laking

K = A7 Aya
L= -—-(.A2|Al—ll.

< IExample 8.1 in scction 8 illustrates the use of the change of variables for a triangular system.

3. Stability of the time-split method

In this section we investigate the stability of the time-split method when applied to a constant
coellicient problem on the entire real line, —o0 < z < oo or, alternalively, on a linile interval
with periodic boundary conditions. When Q%(k/2) = Q(k), as is true for the spliltings (2.4), for
example, Cauchy stability of the Strang splitting (1.8) is equivalent to stability of the first order
splitting

U = QuKQ (kU™ (3.1)
For simplicity we restrict our attentlion to this splitting, and set Q(k) = Q,(k)Q (k).

In general the stability of Q,(k) and Qy(k) does not imply stability of Q(k). Instead stability
must be checked directly. In fact, (3.1) can be unstable even when Qf(k) and Q,(k) are exact
solution operators for well-posed hyperbolic problems as the following example shows.

Ixample 3.1. Let
D _|0o 1
wv=lp 8w

Then the problems u, = Ajug, ve = A,u, and u, = (Ay + A )u, are all well-posed, strictly
hyperbolic problems for any value of the parameler u. Let

Qs(k) = exp(kA;9;), Q,(k) = exp(kA,d;).

and let Gf(&, k/2) and G4(€, k) be the corresponding amplification matrices. For the exact solution

operators,
G (&, k/2) = exp(ikéAy)
. __[e**¢  pisin k¢
- 0 e—1ké
and

Gu(f; k) = exp(ika,)

__[cos k¢ tsinké

" lisinké  coské]

We have p(G (€, k/2)) = p(G4(&,k)) = 1 for all £ and k. On the other hand, the amplification

matrix G(&, k) for the time-split method (3.1) has p(G(&, k)) = 1 for all ¢ and k only il |u| < 2. i

When |g| > 2, the method is unstable. Figure 3.1 shows graphs of p(G(&, k)) for u = 5, 10. f
In spite of this example, there are some very important classes of splittings for which the

individual stability of Qs(k) and @,(k) does imply the stability of @(k). It is uscful to delineate

such classes, since the stability of Q;(k) and Q,(k) is often casy to determine, whereas the stability :

of Q(k) may be quite tedious to determine directly.

12
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e . Figure 3.1. Spectral radius of the amplification matrix G(&, k) of example 3.1 for p = 5,10, as
1 . a function of £k beiween —7 and =. :

! Block triangular systems. One such case is the block triangular system of equations
| b=l )
, v, 0 Azxlv),
& | with the splitting (1.11). The solution v docs not depend on u. In solving for u, the computed v
~ | enters cssentially as a forcing function. The schemes Q,(k) and Qg(k) will be of the form
I le(k)] [Q (k) o] P
s(k) = , k) == | el . 2
o.m=[! Zul g =[Qulk) O (32)

; Suppose that Q1,(k) and Q22(k) are stable schemes, and in particular, that there exist a norm ||-||
| and a constant a > 0 such that

@ikl < L + ak for all k sufliciently small. (3.3)
All of the following estimates will be in this norm. We also suppose that
lRu(k)VII < kMDD V| (3.4)

: for some constant M. These assumptions are satisficd for the methods (2.4) provided the Lax-
Wendroll operalors are stable. We then have the following theorem.




TiEorEM 3.1, Suppose Q (k) and Q (k) are stable schemes as above., Then the split seheme
Q,(k)Q (k) is stable for smooth initial data VY. More precisely, we obtain bounds for the solution
which depend on a diserele Sobolev norm of the initial dala,

o™ < Koo + 1104 vOl) (3.5a)
vl < Kollvel (3.5b)
for nk < T. llere K and K1 are constants depending only on the fixed lime T.
Prool. When the full scheme U1 = Q.(k)Q(k)T™ is written out we oblain
U™ = Qu(k)U™ + @ui(k)Qu2(k)V™ (3.6a)
Vvl = Qa(k)V™ (3.6b)

The bound (3.5b) follows immediately from (3.6b) and the stability of Qg2(k). Morcover, by
linearity, an identical bound holds for the lincar combination of solutions D, V™, i.e.,

1DVl < KrliD+VO.
Using this together with (R.4) in (3.6a) gives
U™+ < 1QuRIIU™ + kM il DL V).
When iterated » times this gives

NU™ < HQuuBIMIUN + kM K- (IQuuB)™ " + 1Quul))™?
+ o+ [1Qulk) + DIIDL VO

By (3.3), 1Qu(k)||I* < (1 + ak)™ < €T if nk < T. Using this in (3.7) gives
O™ < e T(UO) + TMiCr||D, VOl)
for nk < T, which is of the desired form (3.5a). 8§

(3.7)

Simultaneously normalizable matrices. Stability also follows directly when Ay and A,
are normal matrices (a normal malrix is one which commules with its transpose). This includes,
for example, symmetric matrices and scalar problems. In fact, it suffices that Ay and A, be
simultaneously normalizable, i.e., that there exist some nonsingular matrix S such that SA,S™!
and SA;S~! are both normal. Thus, the case of simultancously diagonalizable A and A, is also
covered. This is a consequence of the following, even more gencral, theorem.

THEOREM 3.2. Let Ay, Ag,..., Ay be constant matrices. Approximate each solution operator
exp(k;A;0,) by some operator Q;(k;) with amplification matrix G;(€). Suppose there exists some
nerm || - || for which

“01(6)“ <1 V¢, 7=12,...m. (33)
Then the scheme ‘.

Uttt = Q1 (k1)Qz(ke)- - - @m(km)U™ (3.4)
is stable.

Proof. Let G(€) = G(€)G2(€): - -Gm(€). Then powers of G(£) are uniformly bounded in the

norm || - || since
NG™(&Nl < NGO

< (HGWEN- - lGm(EM™
<1

It follows. that (3.4) is stable. @
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COROLLARY  Suppose there exists some nonsingular matrix S sueh that .‘7'.'\‘,.5"" is normal
fer j = 1,2,..,m and that the aplilication watrices (/)(€) satisty

l) p(("}(f)) S 1 VE; ] = I, 2) <oyt
i) SG(€)S™"  is also normal for all €, j=1,2,...,m
Then the scheme (3.4) is stable.

Remark: Condition (3.5i7) is satisfied if ,(k;) is the exact solution operator or one or more
steps of Lax-Wendroff.

Proof. Since the 2-norm of a normal matrix is equal to its spectral radius, conditions (3.5)
give
ISG,(€)S M lz = p(SG;(£)S™") = p(G;(€)) < 1.
It follows that the hypothesis of Theorem 3.2 is salisfied in the norm || - || defined by

Al = ISAS™!|2.

This completes the proof. R

" 4. The Leapfrog Duhamel method.

As menlioned in the introduction, the time-split method does not immediately lend itself to use
with multi-level difference schemes. We now present a new method with the same basic philosophy
as the time-split method but which uses leapfrog on the stow time scale,

Using Duhamel's principle (i.e., variation of parameters) we can write the solution to (1.3) as

t+k
u(z, t + k) = exp(2kApOz)u(z, t — k) + / exp((t + &k~ T)Afz)Aguz(z, 7) d7.
t—k

If we now approximate the integral by the midpoint rule we obtain

u(z,t + k) == exp(2kA ;9 )u(z, t — k) + 2k exp(kApd:) A uz(z, t)
= exp(kAs0;)[cxp(kA 3. )u(z, t — k) + 2kA,u.(z, t)].

Replacing u.(z, t) by the standard centered difference operator and approximating exp(kA;d,) by
Qs(k) gives the Leapfrog Duhamel method,

UR = QuMIQARUR™ + F AUy — U ()

The term inside the brackets is essentially leapfrog for the problem u, = A,u, since Q@ (k)U""! =~
exp(—kA Dz)U™. 1T Qg(k) is an O(k3) approximation to exp(kA;d;) then (4.1) provides an O(k3)
accurate approximate solution, even for noncommuting Ay and A,. This will be shown in section
5 wherc the method is analyzed in more detail. ‘

We pay a price for using a scheme involving three time levels, since (4.1) requires two applica-
tions of the operator @7(k). One of these is needed only to provide the proper values at time n—1.
Nevertheless, this method may be useful, particularly in cases where exp(kAd;) is known exactly
and thus is casy to apply.

15
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5. Accuracy of the Leapfrog Duhamel method

The Leaplrog Duhamel scheme ean be analyzed in terms of the error in the midpoint rule
directly from ils derivation. We prefer to build upon the results in section 2 by rewriling Leapfrog
Duhamel as a splitting.

I'irst consider the standard leapfrog scheme on uy = A ug,

Urtt = Un=t 4+ 2kA,DoU™.
The truncation error is given by

(u(z,t — k) + 2kA Dou(z, t)] — u(z, t + k)
= [(I + 2kA; Dy exp(kA,8;)) — exp(2kA,3;)]u(z, t — k).

For conformity with scetion 2, we define the operator Q4(2k) by
Q4(2k) = I + 2kA,Dg exp(kA.d,).

Note that this is not the actual finite difference operator for leaplrog, since in general U™ is not
exactly equal to exp(kA,9:)U™", but it is the proper operator for computing the local truncation
error, in which U™~! and U™ are replacced by the truc solution values. We can now define the
truncation error operator for leapfrog on stepsize k& by

ELF (k) = Q,(2k) — exp(2kA,2;) = O(k3). (5.1)
The Leapfrog Duhamel scheme is
U™ = Q(k)Q(K)U™ " + 2kA,DoU™) (5.2)
where Q(k) is some approximation to exp(kA;3;) with error operator
Es(k) = Q(k) — exp(kA;3;) = O(k°).

To obtain the truncation error for Leapfrog Duhamel we replace U™~! and U™ by u(z,t — k) and
u(z,t) in (5.2). The right hand side then becomes

Qr(k)[I + 2kA,Dq exp(kAD.)Q7 ' (k)| Qf(k)u(z, t — k) .
= QKT + 2kA, Do exp(kA.B,) + 2k A, Do(exp(£AD,) Q7 (k)
~ exp(kA,82))|Qs(k)u(z, t — k) (5.3)
= [Q/(k)Q.(2k)Q;(k) + 2kQy (k) A, Do(exp(kADz)
— exp(kA,8;) exp(kA;8;) — exp(kAdz)Ef(k))]u(z, t — k).

Thus the Leapfrog Duhamel operator can be viewed as a splitting of the form Q[(k)Q.(2k)Q (k)
plus some additional error terms which are O(k®). Let E ;. (k) denote the crror operator for the
first order accurate splitting

E:pl-,,,(k) = exp(kAd;) — exp(kA,8;) exp(kA;d,) = O(k?).
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Observing thal

explkA.0) 0 (k) = O(k®),
Qf(k) =1+ ()(k),
Dy = 32 + O(k*),

the operator in {5.3) becomes
Q(K)Q,(2k)Q (k) + 2kAD L1 (k) + O(K*).
Using (2.3) we obtain an expression for the truncation error operator for Leapfrog Duhamel,
BEP(k) = (Qr(k)Qu(2k)Q1 (k) + 26450 Fypin(K) + O(k"))
— cexp(2kA9;)
= Eypiit(2k) + ELF (k) + 2055 (k) + 26,0 L5 (k) + O(K").

For A, and Ay constant we have
. 1
Efpin(k) = 5k (AgAs = AsAf)07 + O(K)

S0
Eypiin(2k) + 2kA, 0, E L) (k)
= — JK3(A%A, - 245 A, Af + AN
+ A2Ap + AgAfA, — 2454033,
The splitting error in Leapfrog Duhamel is thus roughly 8 times as large as the corresponding error
in the time split method with Lax-Wendrofl. The work comparisons of section 2 can be rcpeated
for Leapfrog Duhamel with similar results. '

6. Stability of the Leapfrog Duhamel method

At present the stability analysis for Leapfrog Duhamel covers only the case in which A; and
A, are simultaneously diagonalizable,

XA X '=M;,  XAX'=M,
where M; and M, are diagonalizable matrices. We assume that Qy(k) is stable and is also
diagonalized by X. This is true for @s(k) = exp(kAs3;) or for Qg(k) = (LW(Ay, k/m))™ with

p(As)k/mh < 1. Let qz(k) be a single diagonal clement of X Qs(k)X ~! and u, a diagonal element
of M,. 1t suffices to consider the scalar equation

Ut = g3 (kYU + 2kqg(k)ps DoU™. (6.1)

Let g/(&) be the amplification factor corresponding to qs(k). By assumption, |gs(€)| < 1 for all &.

THEOREM 6.1. Suppose |\p,| < 1, where X = k/h. Then the amplification factor g(€) for
the scheme (6.1) satisfies
lg(€)l = las (€.
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Prool. The amplilication Tactor is derived by letting
Um = g"(£)em"
in (6.1). We obtain the equation
9(€) = g7(€)97"(€) + 20ngg(§)pasin €A
which can be rewritten as
(9(&)g7 ' (€))F — 2idp,sin ER(g(E)gf ' (€))— 1 = 0.

Seolving this quadratic cquation yields

g(£)a7(€) = ixugsin €h £ \/1 — \2u2sin® h.
If [\ pes] € 1, the square rool is real and so

lo(€)a7  (E)F =1

. and hence

1g(&)] = lgs(€)|

as claimed. 0

Note that when the exact solulion operator is used for qg(k) we have |gs(€)| = 1 and hence
jg(€)} = 1 Tor all €. In this case Leapfrog Duhamel is nondissipative.

7. Boundary data for the intermediate solutions.

For general initial boundary value problems we must be able to.gencrate the appropriate
boundary values for the intermediate solutions which arise in the usc of a split scheme. We have
devcloped a general methodology for defining the proper boundary data which will be illustrated
here for constant coefficient problems at an inflow boundary. More general problems can also be
handled, as will be reported on elsewhere. The procedure will be demonstrated for the time-split
method (2.4a,b), but can also be used for the other methods previously described.

First consider the scalar problem

e = —(1 + €)u, z2>0,t2>0
(7.1)
4(0, t) = g¢(¢) t>0

with the splitting
A; = —l, A. = —€.

Take k = 2h and use the mecthod of characteristics solution for A; and Lax-Wendroff on .1, .
There is no nced to use a Strang-type splitling, since the operators commute, and Lhus the split
scheme is simply

U, =U"_o9 m=23...

Ut = U ~ Uy = Uny) + 268Uy = Wi + U _y) (7.2)
m=12,...
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The value of l,/(',"H is given by the boundary conditions,

U8+| = g(tn-{— L )

For the splitting (7.2) we must also provide Uy and U7. [n general with & = ph for some integer
p > 1, we would need Lo supply /g, UT,...,U,_,.

In order to generate boundary data we consider U, as an approximation o ™ (Zm,tay1)
where the continuous function u”(z, ¢) satisfies

L= —u. >0, t> b,
. u, U, z2>0,t2 (7.3)
u (z,tn) = u(z,tn) z 2> 0.

Then, using the differential equalions govecning « and u”, we can express Ua and U7 in terms of
g(t). Consider Uy. We want
Upg=u"(0,7, %
= a0, b3 4 By ta) + SkPug (0, t) + - (7.4)
= u‘ft), t,“ . 1;11‘{'.;(0;, ln) + %k'zu;z((), t-n) 4+ -
Herc we used (7.3) to express u, in terms of u,. DBut since u"(z,¢,) = u(r,t,) for all z, this

relation can be dilferentiated with respict to z, giving u_(x, tn) = u.(z, t,) and similarly for higher
derivatives. So (7.1) becomes

Ug = u(0, tn) — kuz(0, tn) + Lk%u2(0,tn) + -+ .

We can now use the original equations (7.1) governing u to rewrite this in terms of ¢-derivatives of
u. Since

Du = (1——_-:—()119{11. i>0
we obtain
Ug = u(0, ta) + 155 ue(0, tn) + 3 152)%uee (0, tn) + -+
= u(0, t, + k/(1 + ¢€)) (7.5)
= g(tn + k/(1 + €)).

This is the desired boundary data.
For such a simple example it is casy to verify that this is the correct boundary value. According
to the scheme (7.2) we would really like

Ug = U™, = u(—2h, t,).

Of course u is not officially defined for z < 0, but using the differential equation (7.1) it can easily
be extended from the boundary. Since (7.1) has characteristics with slope 1/(1 + ¢}, we find that

w(=2h, tn) = u(0, tn + 2h/(1 +€)) = g(tn + K/(1 +€))

exactly as in (7.5) .
We can compute U in the same manner. We want

Ui =u"(htns1)

= u.(oi tn+l/2) where thi 172 =ta + k/2.
19




We now procead as before,

Uy =" (0,t) + Shug (0, 8,) + :;k‘zu;,((), b) + -
u(0, ta) = Shug(0,t0) + FhZ 0z (0, t,) + -
a(0, ta) + 5155 we(0,80) + 75 )uel0,t0) + -+
= g(tn + 3k/(1 + ().

I

(7.6)

I

To summarize our procedure, we switched from t-derivatives of u” to z-derivatives of u'.
Since these were evaluated at time ¢,, they were identical to the corresponding z-derivatives of
u. We then swilched back Lo ¢-derivatives of u along the boundary, which allowed us to usc the
known boundary conditions for u. Clearly this procedure will nol work so neatly when we deal
with variable cocflicients, systems of equations, or inflow-outflow boundaries. Nonetheless, these
same ideas, combined with a little ingenuity, lead to sufficiently aceurate approximate boundary
conditions for a wide varicty of problems.

Constant coefficient systems. Next consider Lthe system ol equations

u, = Aug = (Ay + Ay )us >0, t>0

u(0, £) = g(¢) t>0. @.7)

We assume that A and Ay have strictly negative eigenvalues. In general Ay and A, do not commute,
so we will have to use a Strang-type splitting. There will be at least two intermediate solutions,
say

U’ == exp(LkAp9,)U™

. (7.8)
U =~ exp(kA,dz) exp(kAgdz)U™.

Of course there may be many more if exp(LkA;8;) is itsell approximated by several steps of Lax-
Wendrolf, but they can be handled similarly. The general principle should be clear fromn considering
(7.8).

Again let u"(z, t) be a continuous function satisfying

up = Agu, 20 t2>t,

u.(zy tn) = 'U(I, t,,) z 2> 0. (7.9)

We then want

U(; = U‘(O, t,.+|/2)
= u"(0,tn) + Skus (0, £,) + $k%up (0, tn) + - -
= u(0,tn) + FhA;uL(0,tn) + JkZATuL(0,t0) + -+ (7.10)
= u(0,tn) + $6A; AT ue(0,tn) + §62ATA 204 (0, tn) + -
=g(ta) + §kA; AT g/ (t) + §KPARATR G (80) + - -

We assume that the boundary is non-characteristic so that A is invertible. In general Uy must
now be approximated by the first few terms of (7.10). If we keep only the first two terms we will
have boundary data with O(k?) errors. This is sufficient to retain the O(k?) global accuracy of
Lax-Wendroll (sce Guslafsson[7)). It may, however, increase the crror constant considerably and
partly offsel the benelit obtained by using the split scheme. Consider, for example, a case in which
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A = 1 and L) & « In this ease the crror ¥ (k)u is like k3 2t most and the resulting
global error, assuming « is simooth, will be like <k*. In order to achieve the same acceuracy in the
boundary data we will have to include the third term of (7.10) as well (or at least its dominant
part). In some such eases it happens that

AT =T1+0() forj=12,...
We can then retain O(ck?) accuracy simply by taking

Ug = gltns1/2) + $k(ApA™" = 1)g/(ta)-

This will be illustrated in Example 7.1 .

Now to find boundary values lo U™, The casiest way Lo proceed is to note that
U™ = exp(~ LkA 0, ) U™
which prompts us Lo define u™"(z,t) as the continuous solution to

u, (z,t) = A,u;‘(z,t) 220, ¢t <ty

- (7.11)
u (IE, tn—f-l) = ‘U.(I, tn-}-l) z 2 0.

We now solve this backwards in time for

Ug = 1" (0,tn41,2)

Proceeding as in the derivation of (7.10) we obtain

Up = g(tns1) — SkAf AT g (tnpr) + §E2AZAT2G (tar1) + -+
=~ g(t'n+l/2) - %k(/lf/‘_l - [)g’(tn+l)‘

Example 7.1 Consider

u ~1 € |{u
v, ¢ —2)|v],

i(z,0) = f(z) 0<z<1
0,0) =g(t) t20

where # = (u,v)T. We have chosen a strip problem to illustrate that outllow boundaries are
frequently trivial Lo handle with a split method. Take

-1 0 0 €
A = A. =
d [ 0 —2]’ * Lz 0]
For this problem the splitting error is
—€1€2 Ll¢
P
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If we use the time-split method (2.1a,h) then, according to (2.11), the aplimal stepsize ralio is

——
A= '%2
%(-’i—f‘l

where ¢ = max|¢). lor k = 2h and h = 1 /M, (2.42,b) becomes:
U, =U"_, m=12..,M

-

Ve =Vm_y, m=23,...M

4;: = LW(A:,,k)Om, m=12..,M-1
~n+1

Uo = .’](tn+l)

-

urtt=u, _,, m=12,...M

+_ — 9
vrrl=v. ,, m=23,..,.M

Notice Lhat no boundary conditions whatsoever need to be specified at the outflow boundary £ = 1.

On the inflow side we still need Lo specily (:/0, Vi, (70 , and VT*!, For ths problem,

1 44+ ¢;cq 3¢y
2 A—2 _
AIA - (2—(1(2)2[ 12¢ 4 4+ 4e (‘]
2 1€2
= [ + O(c).

and we can retain O(ek?) accuracy by taking

Uo = gltatisz) + $k(As AT = I)g'(t,)
k [6:62 €1

2¢s €€

(7.14)
]g'(tn)

= g(tat1/2) + B —r1ca)

Similarly we use
Uo = g(tn+l/2) - %k(AIA—l - 1)gl(tn+l)'

In order to implement the split scheme, we also need V| and V'l"H. We want V: =
v (hytar12) = v (0, tnt1/4) and so the appropriate value comes from the second cquation of

ﬁ.(or tn+l/4) = g(tn+l/4) + %k(AIA‘l - I)g'(t,.)

i.e., .
Vi=g2(tns1/4) + 7(2—__"7“—,)(2629'1(%) + €1€2g3(tn))

where g = (g1, 92)7. Similarly, _
VIt = ga(tnsssi) - 4—(2-_—";7;)(2C20'|(tu+1) + creagy(tnsn))-

Computations confirm that these boundary conditions preserve O(ek?) global accuracy in the
split scheme. Actually, for this particular example with & = 2h, even greater accuracy can be
achicved. Computing F,(k) from (2.5a) shows that the O(ek®) terms exactly cancel the O(ek®)
terms in Eqpiit(k) , and that the total truncation error ET™(k)u is actually O(e2k3), giving O(e2k?)
global accuracy. Higher order boundary condit’ans can be derived which maintain this accuracy,
but this cancellation of errors is a fluke which does not occur in general.
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Stability for the initial boundary value problem. The boundary approximatiors derived
here all depend only on the given boundary tunction g(t) and its derivatives. Suppose the time-
splib method used in the interior is Cauchy stable. Then the stability of the resulting scheme
for the initial boundary value problem follows dircetly from the theory of Guslafsson, KKreiss and
Sundstrom{8], it we modify their stability definition 3.3 by using an appropriate Sobolev norm of
the Doundary data on the right-hand side.

8. Computational results.

In this section we give various examples of splittings and present the results of some numerical
experiments.  The first example is a 2 X 2 upper triangular system of the form (1.11). We
demonstrate the effects of the splitting error and its reduction by the use of a simple change
of variables as discussed in section 2. !

The second example is a variable coeflicivnt scalar equation in which the coefficient has small
variations around sotne large mean value. We give an expression for the splitting error in such
problems.

In example 8.3 we consider the one-dimensional shallow waler equations. In some cases this
system can be broken up into a constant fast part and a quasilinear slow part in conservation form.

fixample 8.1. This problem is designed to illustrate the cffects of the splitting error. Consider

uy = [100 i]u, for0<z<1,¢t>0 (8.1)

with initial conditions 2
uy(z,0) = us{z,0) = g—100(z—1/2)

and periodic boundary conditions
) u;(0, ) = u,(1,¢t) t>0,5=12

FFigure 8.1 shows the results after 236 time steps using Lax-Wendrolf with A = 1/50 and k = h/10
on the unsplit problem. Figurc 8.2 shows the results based on the splitting

1o o _Jo 1
=y o =f il :

We used k = h = 1[50 with
Qs(k) = LW(A4, k), Qg(k/2) = (LW(Af, k{10))°. |

In this case Ii,(k) = E¢(k/2) = 0 by a judicious choice of k/h and m. The second component u,
is computed exactly and the errors in u; arc due entirely to the splitting error.

Il the change of variables suggested in (2.18) is applicd twice to (8.1) with ¢ = 0.1, we obtain
the new variable

G = uy — (€ + €2)ug = uy —0.11uy

@] _[to oot]f@
Uz |, 0 1 [luaf
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and (8.1) becomes




T

I we solve this system with Lhe same split seheme as before and then transform back to the original
variables by wy = @y 4+ 0.0 lLwg, the errors in wy are reduced to QP07 #) as ~cenin ligure 8.4,

The Leaptrog Duhamel scheme ean be applied to this system with similar resalts, The same
change of variables can elearly be used to rednee the splitting error in this scheme as well,

Example 8.2, For problems of the form
= (a + «(r))u,

with « constant and [o(z)| < |a], the splitting error operator corresponding to Ay = a, A, = o(x)
is

Espiic(k) = exp(§kad;) exp(ka(z)d.) exp(dkadz) — exp(k(a + of£))0:)
=_1‘7k3.1((2(,+(y( Na(z) — (o (£))2)D, + O(kY).

For the Leapfrog Duhamel schene the splitting crror is

Ill‘sp“t(gk) + ‘,k(lf( )() IJSPIKL(I\')
= l,.;pl,t(2lc) + 2ka(c)dz( Lk ad (£)d, + O(k?))

= —§/c3a[(2a + a(x))a’(z) — A(a'(z))? = B (£)a(2)0:]D. + O(K").
The Lax-Wendroff and leapfrog errors on u, = a(z)u, are respectively

E:‘W(k) = —%ksa(z)[a?(x)r')i + 3(&(1:)0'(1:)(')2 + (('(£))* + a(.c)u"(.c))i)z]
+ %Ichza(x)()g + O(kY)

and
EEF (k) = 2E% (k) + O(kY).

For the test problem
ue = (1 + 0.1sin(27z))u, on [0,1]
u(z, 0) = sin(4nz) 0<z <
u(0, ¢) = u(1, 1)

a comparison of the errors shows that the splitting error for either scheme with k& = th should be
of roughly the same size as £4(k) and considerably sma'ler than the error for the unsplit operator
with the same spatial step and reduccd time step & = h/2. Thus we cxpect the split scheme with
the true solution operator used on u, = u, to be more accurate than the unsplit scheme. This is
confirmed by the computational results in Table 8.1. Note that in this case the improved accuracy
was obtained using only about one cighth the work required for the unsplil scheme.

If Lax-Wendroff is used on the fast scale, Qp(k/2) = (LW(A;, k/8))*, the corresponding error
2E4(k/2) is roughly the same size as the error in the unsplit scheme. This crror dominates in the
resulting split scheme and so we get roughly the same accuracy as in the unsplit scheme. This is
also illustrated in Table 8.1.

[ixample 8.3. The one-dimensional shallow water equations can be writlen as

i e o
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where »(r, #) is the velocity and ¢ = gh with h{z, t) the height and ¢ the gravitational constant.
Typically ¢(r,t) = o + ¢'(+,t) where ¢ is constant and

19/(2, ) < 19
oz, O] < 141

With the change of variables
~1/2
u(z,t) = ¢ / v(z,t)

u _._.—l/‘z LU (;5 u
[«ﬁ],' » [¢+¢' M

A,::—(Z\l/z[o l]
1 0

the system (8.2) becomes

The natural splitting is then

~—1/2[% 0
Aa(u1 ‘P) = —'rb ¢ .
¢
We have ||A4,]] < [|Af]l. The matrix Af is constant and the method of characteristics can ecasily
be used for Q¢(k/2) . Furthermore, the problem on the slow scale can be written in conservation

form. Since ¢, = ¢, we have
u ~—t/2{ 1,2
el = ().
{b t u¢, z

For the numerical experiments we used the initial conditions

u(z,0) =0
&(z,0) = 16 + 0.1sin(27z) 0<z<1

and took ¢ = 16. We again used periodic boundary conditions and compared Lax-Wendroll on the
unsplit problem with & = hA/20 to the split scheme with £ = h on the slow scale and the method
of characteristics for Q;(%/2) . For h = 1/100 the rcsults are shown in table 8.2. Again the split
scheme outperforms the unsplit scheme. The crrors were reduced by a factor of 100 while at the
same time the work was reduced by roughly a factor of 10.
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Computer time was provided by the Stanlord Linear Accclerator Center of the U.S. Department
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| Figure 8.1. True and computed solutions at ¢ = 4.72 for example 8.1. The first component, u,,
y is on the left and the second component, ug, is on the right. The schemes used are:
top: Unsplit. Lax- Wendroff
middle: Time-split method (2.4a,b)

bottom: Time-split method with change of variables .
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: Table 8.1. Max-norm crrers for example 8.2 at various limes t. The schemes used are:
{ ? #1: unsplit Lax-Wendroff with k£ = h/2
‘ #2: Leapfrog Duhamel with k = 4h, Q(k) = exp(kad;)

#3: Time-split method (2.4a,b) with k = 4h

#4: Time-split method (2.4a,¢) with k£ = 4k, m = 8.

h t #1 #2 #3 #4

/50 0.8 | 6.619(=2) 1.336(—2) 2.147(=3) 6.470(—2)

] 0.96 | 1.342(=1) 1.919(=3) 4.598(=3) 1.315(—1)
1.52 | 2.058(—1) 1.414(=2) 7.193(=3) 2.016(1)

2.00 | 2.685(—1) 3.434(=3) 9.617(=3) 2.623(—1)

: 1/100 0.8 | 1.677(—2) 3.356(=3) 5.581(—4) 1.635(—2)
0.96 | 3.389(—2) 4.130(—1) 1.166(=3) 3.320(—2)
1.52 | 5.314(—2) 3.365(—3) 1.845(—3) 5.197(-2)
2.00 | 6.971(=1) 2.028(—4) 2.437(=3) 6.818(—2)

Table 8.2. Max-norm crrors for u and ¢ in example 8.3 at various times t. The schemes used
are:

#1: unsplit Lax-Wendroff with h = 1/100, k = h/20

#2: Time-split method (2.4a,b) with k = h = 1/100.

L | t #1 #2
xf 4 0.25 | 3.983(=4)  2.952(—6)
o | 3.354(=5)  2.338(=7)
o 0.50 | 8.050(=4)  5.882(—6)
:* 1.248(—4)  9.386(-7)

075 | 1.232(~3)  8.793(-86)
: 2.683(—4)  2.085(—86)

1.0 | 1.687(-=3)  1.166(-5)
1.829(—4)  3.628(—6)
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